Wednesday 31 October 2012

Daya



Nota - DAYA (Tahun 6)




1. apa itu daya
-suatu tolakan atau tarikan
-tolakan (tindakan menjauhkan objek)
-tarikan (tindakan mendekatkan objek)

contoh
-bermain layang2 (tarikan)
-menarik joran (tarikan)
-permainan gelongsor
-berkayak

ciri2 daya
-tdk dpt dilihat tp dpt dirasa
-kesan daya boleh dilihat
-angin tdk dpt dilihat tp boleh dirasa meniup muka & rambut kita...

*akan disambung ke topik 2. kesan daya...

View user profile http://sktuaridtaud.forumotion.com
Back to top Go down





Re: Nota - DAYA (Tahun 6)

Post by Admin on Tue Feb 08, 2011 5:42 pm


2. Kesan daya-objek pegun bergerak bila dikenakan tolakan
-menghentikan pergerakan objek bila dikenakan daya pd arah bertentangan
-mengubah kelajuan pergerakan objek (daya bertentangan akan memperlahankan objek... daya pd arah yg sama menambah kelajuan pergerakan objek)
-mengubah arah pergerakan objek (bila daya dr tepi)
-mengubah bentuk & saiz objek (spt picit belon, buat kuih karipap)

*sambungan ke topik 3. Kesan daya geseran...
View user profile http://sktuaridtaud.forumotion.com
Back to top Go down


Re: Nota - DAYA (Tahun 6)

Post by Admin on Tue Feb 08, 2011 5:51 pm


3. Geseran
berlaku bila 2 permukaan bersentuhan
-spt tayar dgn jlnraya
-menggerakkan duit syiling atas meja
-bila memegang gelas

daya yg menentang pergerakan

permukaan berlainan mempunyai daya geseran berlainan
-permukaan lebih halus lebih sedikit geseran
-lebih kasar lebih besar geseran
-mudah membuka tutup botol dgn tangan kering (geseran tinggi)
-dgn tangan basah, susah membuka penutup botol (geseran rendah)
-mudah menarik objek atas permukaan halus

kesan daya geseran
-objek bergerak semakin perlahan dan kemudian berhenti
-hasilkan haba (spt menggosokkan kedua belah tangan)
-objek berat sukar bergerak (sb lebih berat lebih besar geseran)
-objek haus & koyak (getah pemadam semakin kecil, tapak kasut semakin halus)
-dpt elak drpd tergelincir
View user profile http://sktuaridtaud.forumotion.com
Back to top Go down




Re: Nota - DAYA (Tahun 6)

Post by Admin on Tue Feb 08, 2011 5:56 pm


4. Mengurang & meningkatkan daya geseran

mengurangkan...
-guna pelincir (spt minyak, gris, bebola, rod penggolek, kusyen udara, bedak, lilin)
-permukaan bersentuhan saling menggelongsor dgn mudah

meningkatkan...
-guna permukaan kering
-permukaan kasar
-lapik anti-gelincir dlm bilik mandi
-corak tapak kasut yg kasar

selmt memandu pd jalan kering drpd basah

hipotesis
-objek bergerak lebih jauh pd permukaan yg lebih licin sebelum berhenti
-objek bergerak lebih dekat pd permukaan yg lebih kasar sebelum berhenti
View user profile http://sktuaridtaud.forumotion.com
Back to top Go down

Re: Nota - DAYA (Tahun 6)

Post by Admin on Tue Feb 08, 2011 5:59 pm


5. Kelebihan & keburukan daya geseran

kelebihan
-membolehkan kita berjalan & berlari
-kekalkan objek yg pegun
-mudah pegang botol dgn tagan kering
-kucing guna kuku utk tingkatkan geseran

keburukan
-tayar botak/haus mudah tergelincir
-enjin hasilkan haba & mgkin rosak
View user profile http://sktuaridtaud.forumotion.com
Back to top

Wednesday 17 October 2012

Penyejatan

Penyejatan


Wap air tersejat dari secawan teh panas
Penyejatan merupakan suatu proses yang melibatkan perubahan fasa jirim: atom atau molekul dalam cecair mendapat tenaga yang cukup untuk bertukar kepada gas pada sebarang suhu yang kurang daripada takat didih bahan itu apabila bahan itu terdedah kepada atmosfera. Ia merupakan proses yang berlawanan bagi pemeluwapan.
Proses ini merupakan cara yang penting bagi air untuk diserap semula ke dalam kitaran air daripada bentuk cecair kepada bentuk wap di atmosfera. Lautan, laut, tasik, dan sungai membekalkan lebih kurang 90% daripada lembapan atmosfera melalui proses sejatan, dengan 10% lagi melalui proses transpirasi tumbuhan.
Tenaga daripada matahari diperlukan untuk proses sejatan. Tenaga ini digunakan untuk memutuskan ikatan-ikatan kimia yang menyatukan molekul-molekul air. Hal ini dapat menjelaskan mengapa air dapat menyejat dengan mudah pada takat didih (212°F, 100°C), dan sejatan semakin berkurang apabila mendekati takat lebur. Apabila kelembapan relatif bagi udara ialah 100% (takat ketepuan), sejatan tidak akan berlaku.
Apabila suatu cecair menyejat, suhunya akan turun. Ini disebabkan oleh tenaga haba telah diserap semasa penyejatan untuk mengatasi daya tarikan antara zarah-zarah supaya zarah-zarah cecair di permukaan dapat melepaskan diri menjadikan zarah-zarah gas. Proses sejatan dapat menghilangkan kepanasan di alam sekeliling, maka inilah sebab utama sejatan peluh daripada permukaan kulit dapat menyejukkan badan.

Wednesday 10 October 2012

Video Lagu Patriotik







Terima Kasih Kepada Cikgu Zakiah Kerana Telah Mengajar Saya  Membuat Video (Movie Maker).......!!!!!!

Gas Asli

Gas asli

Daripada Wikipedia, ensiklopedia bebas.
Lompat ke: pandu arah, cari
Gas asli ialah gas yang terbentuk dalam lapisan magma di dalam bumi. Gas ini terperangkap di dalam lapisan-lapisan bumi, biasanya bersama-sama petroleum. Komposisinya juga hampir sama, sebatian hidrokarbon terutamamnya gas Metana.

 

 Isi kandungan

Gas Asli Cecair

Gas Asli Cecair atau LNG sebahagian besarnya mengandungi Metana dan lain-lain hidrokarbon seperti etana, propana dan butana.
Apabila metana disejukkan ke paras suhu -161'C ia bertukar dari bentuk gas menjadi cecair. Melalui proses ini gas asli yang telah bertukar dalam bentuk cecair dikurangkan menjadi 1/600 dari jumlah isipadu gas asli di dalam bentuk gas. Oleh itu , ia boleh dibawa dengan tangki-tangki khas dengan jumlah yang banyak ke tempat-tempat yang memerlukannya.
Apabila dicair dan disejukkan , gas asli cecair dapat disimpan pada kadar tekanan udara. Oleh itu , ia boleh dijadikan simpanan gas yang berguna dan boleh dikeluarkan apabila permintaaan barangan tersebut melebihi kadar biasa.

Pengeluaran

Gas asli terpaksa melalui berbagai proses sebelum gas asli cecair diperolehi.
Gas daripada pelantar luar pantai akan disalurkan melalui paip bawah laut ke Stesen Pengambilan Gas di mana jumlah gas akan diukur. Lembapan dan lain-lain bahan yang tidak dingini yang berada di dalam gas dikeluarkan.
Dari sini gas tersebut disalurkan kepada Unit Pengasingan Gas Asid di mana karbon dioksida dan hidrogen sulfida dalam gas tersebut dukeluarkan untuk mengelakkan dari berlaku pembekuan dan tersumbat di dalam Unit Pencairan.
Gas tersebut kemudian disalurkan ke Unit Pengeringan di mana wap dikeluarkan lagi.
Selepas itu gas tersebut akan dihantar ke Unit Pemecahan di mana ia akan dipecahkan kepada berbagai komponen. Lain-lain komponen seperti etana dan propana dikeluarkan untuk dijadikan bahan penyejuk , sementara benzene paraffin dikeluarkan untuk mengelakkan pembekuan dan tersumbat semasa proses pencairan.
Gas yang selebihnya dihantar ke Unit Pencairan di mana ia dicarikan dengan menyejukkan suhu ke paras -161'C dengan menggunakan alat penyejuk.

Penukaran kepada gas asli cecair

Proses penukaran gas asli kepada gas asli cecair ini bermula di stesen pengambilan gas yang sama . Proses ini melibatkan proses pengeluaran bahan-bahan yang tidak diperlukan dari gas isian loji, mengekalkan tekanan aliran gas ke loji dan mengukur pengambilan gas ke loji.
  1. Unit pengasing gas asid untuk mengeluarkan sebatian karbon dioksida dan sulfur dari gas yang akan dicairkan. Ini adalah perlu untuk menghalang pembekuan karbon dioksida di dalam bahagian pencecairan di samping mengelakkan kakisan peralatan dan pencemaran barangan.
  2. Unit pengeringan untuk mengeluarkan air dari dalam gas , dengan itu dapat mengelakkan masalah pembekuan di bahagian pencecairan.
  3. Unit pencecairan dan unit pemecahan.
apabila gas asli cecair tiba ditempatnya, ia dimasukkan ke dalam tangki simpanan yang ditebat. Sebelum ia dapat digunakan ia mestilah dipanaskan menjadi gas semula. Gas tersebut kemudian disalurkan melalui paip kepada pengguna. Gas asli yang digunakan di dalam kenderaan.

Kegunaan

Kegunaan utama gas asli ialah :
  1. Penghasilan tenaga elektrik di stesen janakuasa elektrik.
  2. Bahan bakar kenderaan (NGV)
  3. Gas memasak di dapur
  4. Alat pemanasan di rumah
  5. Penghasilan baja
  6. Industri petrokimia

Gas asli cecair biasanya digunakan di bandar-bandar tetapi kini disebarluas ke kawasan pedalaman . Tong gas dan dapur gas diberi secara percuma di kebanyakan kawasan di Sabah semasa pilihan raya.
Kebanyakan gas asli cecair yang dikeluarkan di dunia hari ini digunakan sebagai bahan api industri kerana ciri-cirinya yang bebas dari pencemaran dan nilai kalori yang tinggi.
Dibandingkan dengan petroleum, gas asli tidak menghasilkan banyak pencemaran. Namun faktor utama ia tidak digunakan lebih meluas ialah kesukaran penghantaran dan penyimpanan. Ini adalah kerana gas asli amat mudah terbakar/meletup.

Sejarah industri LNG

Loji gas asli cecair yang pertama telah dibina pada bulan Jauari 1940 oleh Hope Natural Gas Company di Amerika Syarikat . Loji tersebut berupaya mencecairkan sebanyak 300,000 kaki padu sehari dan menyimpan sebanyak lebih dari 1 juta kaki padu gas.
Hantaran pertama gas asli cecair di antara benua bermula tahun 1964 dengan perdagangan di antara Algeria dan England. Sejak bermulanya perdagangan gas asli cecair dunia tahun 1964, industri gas asli cecair telah berkembang dengan cepat sama ada dari segi jumlah projek yang dikendalikan mahupun dari segi saiz setiap projek.
Malaysia turut mempunyai loji proses gas asli di Bintulu yang bernama Malaysia LNG Sdn Bhd

Fenomena dunia

Gas Asli Cecair telah menjadi bertambah penting sebagai punca tenaga di tiga kawasan industri di dunia iaitu Amerika Syarikat, Eropah Barat dan Jepun. Peningkatan ini berkaitan dengan pencemaran udara, pemeliharaan alam sekitar dan bahantahan terhadap pembakaran gas dengan jumlah yang banyak dari operasi minyak mentah.

Pengguna utama

Jepun adalah merupakan penguna gas asli cecair yang utama di dunia dan mengimport lebih separuh gas asli cecair dunia. Ia merupakan sumber tenaga yang keempat pentingnya di Jepun dan dianggarkan akan menyumbang 9 % dari keperluan sumber tenaga negara tersebut pada tahun 1990.
Sehingga kini, Jepun merupakan negara yang paling maju dalam cara pengunaan gas asli cecair. kira-kira 75 % gas asli cecair digunakan untuk menjana elektrik sementara 23 % dibekalkan untuk kegunaan rumah tangga. Selebihnya digunakan untuk industri besi keluli, kimia dan tekstil.

Penghantaran

29 Januari 1983 kapal Tenaga Satu sebuah kapal tangki gas asli cecair yang disewa dari Perbadanan Perkapalan Antarabangsa Malaysia (MISC) telah berlayar ke Jepun dengan kargo gas asli cecair yang pertama sebanyak 57,000 tan metrik. Ia merupakan penghantaran kargo gas asli yang pertama dari 2000 penghantaran yang akan dihantar ke Tokyo Electric Power Company dalam kontrak 20 tahun yang akan berakhir pada 31 Mac 2003.
Bandar Yokohama di Jepun di mana MISC mempunyai pejabat gas asli cecair akan dijadikan pusat operasi utama. Semua kerja-kerja pembaikan dijangka akan dijalankan di limbungan kapal Honmoku di Yokohama.
Perbadanan Perkapalan Antarabangsa Malaysia (MISC) telah menempah 5 buah kapal dari Peranchis. Kapal tersebut dibina di limbungan kapal Chantiers de France Dunkerque di Peranchis.
Tempoh pelayaran untuk penghantaran ke Jepun termasuk pelayaran balik ke Bintulu ialah selama 14 hari. Kelajuan kapal ini ialah 19 knot sejam.
1982 , sejumlah 34 penghantaran telah dikendalikan. Jumlah ini bertambah menjadi 60 pada tahun 1984 dan 120 setahun mulai tahun 1986.

Pelanggan utama

Tokyo Electric Power Company dan Tokyo Gas Company yang mempunyai keupayaam penjanaan sebanyak 40,000 megawatt adalah merupokan syarikat penjana kuasa elektrik terbesar di dunia.
Pada 1983, sejumlah 1.7 juta tan metrik gas asli cecair dieksport ke Jepun. Apabila gas asli cecair tiba di Jepun, ia akan diterima di terminal Sodegaura dan di terminal baru Tokyo Power Company di Higashi Ogishima di Teluk Tokyo.
7 Februari 1983 kapal Tenaga Satu berlabuh di pengkalan Tokyo Gas di Sodegaura . Projek LNG ini dapat mengeratkan hubungan antara Malaysia dan Jepun.

Kadar

  • 1 tan gas asli cecair = 1.14 hingga 1.22 tan minyak mentah
  • 1 tan minyak mentah = 7.3 tong minyak mentah
  • 1 tong minyak mentah = 5,800 kaki padu gas asli
  • 1 juta kaki padu gas asli = 13.69 tan metrik gas asli cecair
  • 1 tan metrik gas asli cecair = 51.8 juta British Thermal Unit
  • 1 kaki padu gas asli = 1000 British Thermal Unit.

Lihat juga

Rujukan

  • Nada Petronas- Malaysia LNG , Februari 1983

Sunday 7 October 2012

Uranus


Uranus

Uranus

Uranus is the seventh planet from the Sun and the third largest (by diameter). Uranus is larger in diameter but smaller in mass than Neptune.
        orbit:    2,870,990,000 km (19.218 AU) from Sun
        diameter: 51,118 km (equatorial)
        mass:     8.683e25 kg

Careful pronunciation may be necessary to avoid embarrassment; say "YOOR a nus" , not "your anus" or "urine us".
Uranus is the ancient Greek deity of the Heavens, the earliest supreme god. Uranus was the son and mate of Gaia the father of Cronus (Saturn) and of the Cyclopes and Titans (predecessors of the Olympian gods).
Uranus, the first planet discovered in modern times, was discovered by William Herschel while systematically searching the sky with his telescope on March 13, 1781. It had actually been seen many times before but ignored as simply another star (the earliest recorded sighting was in 1690 when John Flamsteed cataloged it as 34 Tauri). Herschel named it "the Georgium Sidus" (the Georgian Planet) in honor of his patron, the infamous (to Americans) King George III of England; others called it "Herschel". The name "Uranus" was first proposed by Bode in conformity with the other planetary names from classical mythology but didn't come into common use until 1850.
Uranus has been visited by only one spacecraft, Voyager 2 on Jan 24 1986.
Most of the planets spin on an axis nearly perpendicular to the plane of the ecliptic but Uranus' axis is almost parallel to the ecliptic. At the time of Voyager 2's passage, Uranus' south pole was pointed almost directly at the Sun. This results in the odd fact that Uranus' polar regions receive more energy input from the Sun than do its equatorial regions. Uranus is nevertheless hotter at its equator than at its poles. The mechanism underlying this is unknown.
Actually, there's an ongoing battle over which of Uranus' poles is its north pole! Either its axial inclination is a bit over 90 degrees and its rotation is direct, or it's a bit less than 90 degrees and the rotation is retrograde. The problem is that you need to draw a dividing line *somewhere*, because in a case like Venus there is little dispute that the rotation is indeed retrograde (not a direct rotation with an inclination of nearly 180).
Uranus is composed primarily of rock and various ices, with only about 15% hydrogen and a little helium (in contrast to Jupiter and Saturn which are mostly hydrogen). Uranus (and Neptune) are in many ways similar to the cores of Jupiter and Saturn minus the massive liquid metallic hydrogen envelope. It appears that Uranus does not have a rocky core like Jupiter and Saturn but rather that its material is more or less uniformly distributed.
Uranus' atmosphere is about 83% hydrogen, 15% helium and 2% methane.
Like the other gas planets, Uranus has bands of clouds that blow around rapidly. But they are extremely faint, visible only with radical image enhancement of the Voyager 2 pictures (right). Recent observations with HST (left) show larger and more pronounced streaks. Further HST observations show even more activity. Uranus is no longer the bland boring planet that Voyager saw! It now seems clear that the differences are due to seasonal effects since the Sun is now at a lower Uranian latitude which may cause more pronounced day/night weather effects. By 2007 the Sun will be directly over Uranus's equator.
Uranus' blue color is the result of absorption of red light by methane in the upper atmosphere. There may be colored bands like Jupiter's but they are hidden from view by the overlaying methane layer.
Like the other gas planets, Uranus has rings. Like Jupiter's, they are very dark but like Saturn's they are composed of fairly large particles ranging up to 10 meters in diameter in addition to fine dust. There are 13 known rings, all very faint; the brightest is known as the Epsilon ring. The Uranian rings were the first after Saturn's to be discovered. This was of considerable importance since we now know that rings are a common feature of planets, not a peculiarity of Saturn alone.
Voyager 2 discovered 10 small moons in addition to the 5 large ones already known. It is likely that there are several more tiny satellites within the rings.
Uranus' magnetic field is odd in that it is not centered on the center of the planet and is tilted almost 60 degrees with respect to the axis of rotation. It is probably generated by motion at relatively shallow depths within Uranus.
Uranus is sometimes just barely visible with the unaided eye on a very clear night; it is fairly easy to spot with binoculars (if you know exactly where to look). A small astronomical telescope will show a small disk. There are several Web sites that show the current position of Uranus (and the other planets) in the sky, but much more detailed charts will be required to actually find it. Such charts can be created with a planetarium program.

Uranus' Satellites

Uranus has 27 named moons:
  • Unlike the other bodies in the solar system which have names from classical mythology, Uranus' moons take their names from the writings of Shakespeare and Pope.
  • They form three distinct classes: the 11 small very dark inner ones discovered by Voyager 2, the 5 large ones (right), and the newly discovered much more distant ones.
  • Most have nearly circular orbits in the plane of Uranus' equator (and hence at a large angle to the plane of the ecliptic); the outer 4 are much more elliptical.

           Distance  Radius    Mass
Satellite  (000 km)   (km)     (kg)   Discoverer   Date
---------  --------  ------  -------  ----------  -----
Cordelia         50      13    ?      Voyager 2    1986
Ophelia          54      16    ?      Voyager 2    1986
Bianca           59      22    ?      Voyager 2    1986
Cressida         62      33    ?      Voyager 2    1986
Desdemona        63      29    ?      Voyager 2    1986
Juliet           64      42    ?      Voyager 2    1986
Portia           66      55    ?      Voyager 2    1986
Rosalind         70      27    ?      Voyager 2    1986
Cupid            75       6    ?      Showalter    2003
Belinda          75      34    ?      Voyager 2    1986
Perdita          76      40    ?      Voyager 2    1986
Puck             86      77    ?      Voyager 2    1985
Mab              98       8    ?      Showalter    2003
Miranda         130     236  6.30e19  Kuiper       1948
Ariel           191     579  1.27e21  Lassell      1851
Umbriel         266     585  1.27e21  Lassell      1851
Titania         436     789  3.49e21  Herschel     1787
Oberon          583     761  3.03e21  Herschel     1787
Francisco      4281       6    ?      Sheppard     2003
Caliban        7169      40    ?      Gladman      1997
Stephano       7948      15    ?      Gladman      1999
Trinculo       8578       5    ?      Holman       2001
Sycorax       12213      80    ?      Nicholson    1997
Margaret      14689       6    ?      Sheppard     2003
Prospero      16568      20    ?      Holman       1999
Setebos       17681      20    ?      Kavelaars    1999
Ferdinand     21000       6    ?      Sheppard     2003

Uranus' Rings

         Distance   Width
Ring       (km)      (km)
-------  --------   -----
1986U2R    38000    2,500
6          41840    1-3
5          42230    2-3
4          42580    2-3
Alpha      44720    7-12
Beta       45670    7-12
Eta        47190    0-2
Gamma      47630    1-4
Delta      48290    3-9
1986U1R    50020    1-2
Epsilon    51140    20-100
(distance is from Uranus' center to the ring's inner edge)

Zuhal

Saturn

Saturn by NASA's Cassini orbiter

Saturn is the sixth planet from the Sun and the second largest:
        orbit:    1,429,400,000 km (9.54 AU) from Sun
        diameter: 120,536 km (equatorial)
        mass:     5.68e26 kg


In Roman mythology, Saturn is the god of agriculture. The associated Greek god, Cronus, was the son of Uranus and Gaia and the father of Zeus (Jupiter). Saturn is the root of the English word "Saturday" (see Appendix 5).
Saturn has been known since prehistoric times. Galileo was the first to observe it with a telescope in 1610; he noted its odd appearance but was confused by it. Early observations of Saturn were complicated by the fact that the Earth passes through the plane of Saturn's rings every few years as Saturn moves in its orbit. A low resolution image of Saturn therefore changes drastically. It was not until 1659 that Christiaan Huygens correctly inferred the geometry of the rings. Saturn's rings remained unique in the known solar system until 1977 when very faint rings were discovered around Uranus (and shortly thereafter aroundJupiter and Neptune).
Saturn was first visited by NASA's Pioneer 11 in 1979 and later by Voyager 1 and Voyager 2Cassini (a joint NASA / ESA project) arrived on July 1, 2004 and will orbit Saturn for at least four years.
Saturn is visibly flattened (oblate) when viewed through a small telescope; its equatorial and polar diameters vary by almost 10% (120,536 km vs. 108,728 km). This is the result of its rapid rotation and fluid state. The other gas planets are also oblate, but not so much so.
Saturn is the least dense of the planets; its specific gravity (0.7) is less than that of water.
Like Jupiter, Saturn is about 75% hydrogen and 25% helium with traces of water, methane, ammonia and "rock", similar to the composition of the primordial Solar Nebula from which the solar system was formed.
Saturn's interior is similar to Jupiter's consisting of a rocky core, a liquid metallic hydrogen layer and a molecular hydrogen layer. Traces of various ices are also present.
Saturn's interior is hot (12000 K at the core) and Saturn radiates more energy into space than it receives from the Sun. Most of the extra energy is generated by the Kelvin-Helmholtz mechanism as in Jupiter. But this may not be sufficient to explain Saturn's luminosity; some additional mechanism may be at work, perhaps the "raining out" of helium deep in Saturn's interior.
The bands so prominent on Jupiter are much fainter on Saturn. They are also much wider near the equator. Details in the cloud tops are invisible from Earth so it was not until the Voyager encounters that any detail of Saturn's atmospheric circulation could be studied. Saturn also exhibits long-lived ovals (red spot at center of image at right) and other features common on Jupiter. In 1990, HST observed an enormous white cloud near Saturn's equator which was not present during the Voyager encounters; in 1994 another, smaller storm was observed (left).
Two prominent rings (A and B) and one faint ring (C) can be seen from the Earth. The gap between the A and B rings is known as the Cassini division. The much fainter gap in the outer part of the A ring is known as the Encke Division (but this is somewhat of a misnomer since it was very likely never seen by Encke). The Voyager pictures show four additional faint rings. Saturn's rings, unlike the rings of the other planets, are very bright (albedo 0.2 - 0.6).
Though they look continuous from the Earth, the rings are actually composed of innumerable small particles each in an independent orbit. They range in size from a centimeter or so to several meters. A few kilometer-sized objects are also likely.
Saturn's rings are extraordinarily thin: though they're 250,000 km or more in diameter they're less than one kilometer thick. Despite their impressive appearance, there's really very little material in the rings -- if the rings were compressed into a single body it would be no more than 100 km across.
The ring particles seem to be composed primarily of water ice, but they may also include rocky particles with icy coatings.
Voyager confirmed the existence of puzzling radial inhomogeneities in the rings called "spokes" which were first reported by amateur astronomers (left). Their nature remains a mystery, but may have something to do with Saturn's magnetic field.
Saturn's outermost ring, the F-ring, is a complex structure made up of several smaller rings along which "knots" are visible. Scientists speculate that the knots may be clumps of ring material, or mini moons. The strange braided appearance visible in the Voyager 1 images (right) is not seen in the Voyager 2 images perhaps because Voyager 2 imaged regions where the component rings are roughly parallel. They are prominent in the Cassini images which also show some as yet unexplained wispy spiral structures.
There are complex tidal resonances between some of Saturn's moons and the ring system: some of the moons, the so-called "shepherding satellites" (i.e. AtlasPrometheus and Pandora) are clearly important in keeping the rings in place; Mimas seems to be responsible for the paucity of material in the Cassini division, which seems to be similar to the Kirkwood gaps in the asteroid belt; Pan is located inside the Encke Division and S/2005 S1 is in the center of the Keeler Gap. The whole system is very complex and as yet poorly understood.
The origin of the rings of Saturn (and the other jovian planets) is unknown. Though they may have had rings since their formation, the ring systems are not stable and must be regenerated by ongoing processes, perhaps the breakup of larger satellites. The current set of rings may be only a few hundred million years old.
Like the other jovian planets, Saturn has a significant magnetic field.
When it is in the nighttime sky, Saturn is easily visible to the unaided eye. Though it is not nearly as bright as Jupiter, it is easy to identify as a planet because it doesn't "twinkle" like the stars do. The rings and the larger satellites are visible with a small astronomical telescope. There are several Web sites that show the current position of Saturn (and the other planets) in the sky. More detailed and customized charts can be created with a planetarium program.

Saturn's Satellites

Saturn has 53 named satellites and 62 in total:
  • The three pairs Mimas-Tethys, Enceladus-Dione and Titan-Hyperion interact gravitationally in such a way as to maintain stable relationships between their orbits: the period of Mimas' orbit is exactly half that of Tethys, they are thus said to be in a 1:2 resonance; Enceladus-Dione are also 1:2; Titan-Hyperion are in a 3:4 resonance.
  • See Scott Sheppard's site for the latest about recently discovered moons (there are lots).
  • There are 9 more that have been discovered but as yet not named.
Major moons:
           Distance  Radius    Mass
Satellite  (000 km)   (km)     (kg)   Discoverer   Date
---------  --------  ------  -------  ----------  -----
Pan             134      10     ?     Showalter    1990
Atlas           138      14     ?     Terrile      1980
Prometheus      139      46  2.70e17  Collins      1980
Pandora         142      46  2.20e17  Collins      1980
Epimetheus      151      57  5.60e17  Walker       1980
Janus           151      89  2.01e18  Dollfus      1966
Mimas           186     196  3.80e19  Herschel     1789
Enceladus       238     260  8.40e19  Herschel     1789
Tethys          295     530  7.55e20  Cassini      1684
Telesto         295      15     ?     Reitsema     1980
Calypso         295      13     ?     Pascu        1980
Dione           377     560  1.05e21  Cassini      1684
Helene          377      16     ?     Laques       1980
Rhea            527     765  2.49e21  Cassini      1672
Titan          1222    2575  1.35e23  Huygens      1655
Hyperion       1481     143  1.77e19  Bond         1848
Iapetus        3561     730  1.88e21  Cassini      1671
Phoebe        12952     110  4.00e18  Pickering    1898

Saturn's Rings

                  Radius   Radius             approx.   approx.
Name               inner    outer     width  position  mass (kg)
----              ------   ------     -----  --------  --------
D-Ring            67,000   74,500     7,500    (ring)
Guerin Division   
C-Ring            74,500   92,000    17,500    (ring)  1.1e18
Maxwell Division  87,500   88,000       500  (divide)
B-Ring            92,000  117,500    25,500    (ring)  2.8e19
Cassini Division 115,800  120,600     4,800  (divide)
Huygens Gap      117,680    (n/a)   285-440  (subdiv)
A-Ring           122,200  136,800    14,600    (ring)  6.2e18
Encke Minima     126,430  129,940     3,500   29%-53%
Encke Division   133,410  133,740
Keeler Gap       136,510  136,550
F-Ring           140,210             30-500   (ring)
G-Ring           165,800  173,800     8,000    (ring)  1e7?
E-Ring           180,000  480,000   300,000    (ring)

Notes:
  * distance is kilometers from Saturn's center
  * the "Encke Minima" is a slang term used by amateur astronomers, not an official IAU designation
This categorization is actually somewhat misleading as the density of particles varies in a complex way not indicated by a division into neat regions: there are variations within the rings; the gaps are not entirely empty; the rings are not perfectly circular.